Proyecto
Nombre de la empresa y organización
Société Wallonne des Eaux
Red neuronal convolucional profunda en malla de realidad 3D para la detección de grietas en tanques de agua
Image Credit: La Société Wallonne des Eaux
Proyecto
Nombre de la empresa y organización
Société Wallonne des Eaux
Red neuronal convolucional profunda en malla de realidad 3D para la detección de grietas en tanques de agua
Image Credit: La Société Wallonne des Eaux
Categorías de premios
Geospatial and reality modeling,Surveying and monitoring
Ubicación
Juprelle, Lieja, Bélgica
Software de Bentley que se usó
ContextCapture, ContextCapture Insights, MicroStation, Pointools
Resumen del proyecto
Regional water corporation Société Wallonne des Eaux owns and operates a 50-meter-high water tower in Juprelle, Belgium, with a storage capacity of 500 cubic meters. Previous surveys revealed damage, so they took ground photos to define the renovation works but missed the most significant damage. To refine their methods and obtain a more insightful assessment of the water tower’s condition they needed to apply photogrammetry, machine learning, and 3D modeling technology.They selected ContextCapture Insights to process over 3,000 images and generate a digital twin of the tower to visualize the entire structure and assess the damage. Using machine learning on the digital twin, they automated the accurate identification and quantification of the size of the cracks and determined the optimal corrective actions. The digital process reduced survey and modeling time and reduced costs. The digital twin could be completed in one day, enabling a quick assessment and remediation plan to ensure a reliable water supply.